Revisiting timbral brightness perception

Charalampos Saitis¹, Kai Siedenburg², Christoph Reuter³

¹ Centre for Digital Music, Queen Mary University of London (United Kingdom) ² Department of Medical Physics and Acoustics, Carl von Ossietzky University of Oldenburg (Germany) ³ Musicological Department, University of Vienna (Austria)

c.saitis@qmul.ac.uk

Main results

Brightness dimension in timbre space **not** "purely" spectral.

Between **sounds** with very close spectral centroid values but different attack times, those with faster attacks tend to be perceived as brighter.

Source/cause categories influence general dissimilarity but **not** brightness dissimilarity.

Study 1: Relation to general timbre dissimilarity and source/cause categories

Methods

- 14 instrumental sounds & 40 musically experienced listeners
- General and brightness dissimilarity ratings & direct multi stimulus brightness ratings
- Multidimensional scaling analysis (MDS) & comparisons via congruence coefficient (CC), modified RV coefficient (RVmod), and **Procrustes analysis metric** (m²)
- Modeling of raw dissimilarities by means of **partial least-squares** regression (PLSR) using 12 temporal and 22 spectral audio descriptors (Timbre Toolbox) and 4 categorical descriptors

Study 2: Is faster also brighter? Relation to onset temporal cues

Methods

universität

wien

- 14 + 10 instrumental sounds & 36 musically experienced listeners
- Direct multi stimulus brightness ratings
- Linear mixed effects model analysis with crossed (maximal) random effects design
- Spectral centroid (SCG) and (log) attack time (LAT) (Timbre Toolbox)

Results

Results: MDS analysis

	Relation	CC (exp., SD)	r
-	A - B	.84 (.86, .04)	.74***
	B2 - A1	.87 (.87, .06)	.87***
VIB	B1 - A2	.83 (.83, .08)	.83***
*HCD	B1 - D	.99 (.99, .00)	.98***
-	A2 - D	.92 (.92, .04)	.77**
	C - D	.99 (.99, .00)	.98***
4		RV-mod	m²
	A - B	.41**	.40***
	** p < .01 *	*** p < .001	
3	 Brightne 	es dimension in tir	mhre

- space not "purely" spectral
- Acoustic instrument sounds exhibit an inherent correlation of spectral and temporal features

Brightness ~ 1 + SCG*LAT
+ (1 + SCG + LAT I Listener)
+ (1 + SCG + LAT I Stimulus)

Fixed effects	df	F	p
Intercept	1, 85.15	8.90	.003
SCG	1, 82.90	17.58	< .001
LAT	1, 59.09	6.18	.016
SCG × LAT	1, 57.59	7.68	.008
	$R^2 = .65$		

- Evidence of influence of LAT on brightness perception—likely not a "pure" effect but rather due to an interaction with SCG
- A similar analysis with synthetic stimuli suggests that fluctuation of SCG during the onset of a sound may play a role in brightness perception

HARCEHER HARCHER VERTER HOLEN

HELPSTOLESCIPTOLESCIPTOLESCIPTIC

Count

VIB

0.4

Results: PLSR modeling

4 types of source/cause categories				
Evoitation	continuous, impulsive			
Excitation	blown, bowed, struck, plucked			
Resonator	string, air column, bar			
Family	woodwinds, brass, keyboards, strings, percussion			

• Evidence for influence of source-cause categories in general dissimilarity but not in brightness dissimilarity

References

Saitis C, Siedenburg K (in preparation) Brightness perception of acoustic instrument sounds: relation to general timbre dissimilarity and source/cause categories.

Siedenburg K, Jones-Mollerup K, McAdams S (2016) Acoustic and categorical dissimilarity of musical timbre: Evidence from asymmetries between acoustic and chimeric sounds. Front Psychol 6:1977

Siedenburg K, Saitis C, McAdams S, Popper AN, Fay RR, editors (2019) Timbre: Acoustics, Perception, and Cognition. Springer, Cham

Peeters G, Giordano BL, Susini P et al (2011) The Timbre Toolbox: Audio descriptors of musical signals. J Acoust Soc Am 130:2902-2916

Marozeau J, de Cheveigné A (2007) The effect of fundamental frequency on the brightness dimension of timbre. J Acoust Soc Am 121:383–387

Zacharakis A, Terrell MJ, Simpson AJ, Pastiadis K, Reiss JD (2017) Rearrangement of timbre space due to background noise: Behavioural evidence and acoustic correlates. Acta Acust united Acust 103:288–298

Acknowledgments

Data were collected at the Audio Communication Group, TU Berlin (Study 1) and the Institute of Musicology, University of Vienna (Study 2). Kai Siedenburg has received funding from the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Skłodowska-Curie Grant Agreement No. 747124.